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The symmetry group represented in crystal space by the array of symmetry elements, or by the
coordinates of equivalent points, is equally contained in the expressions of the geometrical structure
factor; it should thereforc be possible to derive the ‘symmetry’ of the latter directly in Fourier
space without any reference to crystal space. This program involves the distribution of complex
weights on the lattice points of the reciprocal lattice. The relative phases of the weights at symmetry-
related points can be determined by considerations of uniqueness. This leads to the Fourier-space
equivalent of complex symmetry groups in crystal space (including the black-white and colored
groups). In order thence to arrive at the 230 Fourier transforms of the Schoenflies—Fedorov groups
a restriction has to be placed on the phase relations which corresponds to the exclusion of complex

and antisymmetry elements in crystal space.

1. The problem and plan of this paper

The Fourier transform of a function in physical space,
e.g. the charge density, o(x, y,z), in a crystal, is a
complete image of this function in reciprocal or Fourier
space. Hence any transformation property of the
function in physical space, such as produced by sym-
metry elements, must have its equivalent in Fourier
space. In fact, the ‘geometrical structure factors’ as
listed for each space group in the International Tables
for X-ray Crystallography (1952) contain implicitly
the symmetry properties in Fourier space. These
symmetry properties are not easily recognizable. Only
those point symmetry elements which pass through
the origin in physical space give rise to equivalent
symmetry elements about the origin of Fourier space,
whereas other symmetry elements in physical space
lead to phase relations between equivalent points in
Fourier space. These can, of course, be found from the
explicit geometrical structure factors (Buerger, 1949,
1960; Waser, 1955; Nowacki, 1950), but it should be
possible to derive them in a direct and, in that sense,
more satisfactory manner by applying the essential
group-theoretical properties of space groups directly
to Fourier space, instead of following the present
circuitous way of first operating in physical space
so as to find the possible combinations of symmetry
elements (i.e. the 230 space groups), then listing the
coordinates of equivalent points, next making the
Fourier transformation by writing down the geom-
etrical structure factors and finally discussing these
in view of relations expressing the symmetry in
Fourier space.
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In the following, a direct approach to this problem
is offered. It differs from the problem of establishing
the 230 Schoenflies-Fedorov space groups in physical
space in two characteristic respects:

(1) Periodicity in physical space does not correspond
to periodicity in Fourier space, but instead to the
reduction of Fourier space to the set of reciprocai
lattice points—i.e., Fourier space is reduced to the
‘index space’ of the Fourier coefficients F(h, k, 1),
and is not a continuous space. It is reduced to one
of the 14 Bravais lattices, and may have any com-
patible symmetry.

(i) Even though the function in physical space
may be real (or even positive like p(x, ¥, z)), the
function in Fourier space is, in general, complex.
For this reason the symmetry we expect to recognize
is compounded of symmetry elements of three-
dimensional space character (as in physical space) and
of symmetry elements appropriate to the Gaussian
plane of complex numbers.

In order not to unnecessarily restrict the generality
of our method, and so as to preserve, as long as
convenient, the duality between physical and Fourier
space, we start by defining what we understand by
complex symmetry elements, point groups, and space
groups. Applying these definitions to physical space,
the black-white groups (Belov, Neronova & Smirnova,
1957) follow when the phase changes are restricted
to 0 or n, and the colored (Belov & Tarkhova, 1956)
space groups include more general phase changes.
If no phase change is allowed, the complex symmetry
elements are restricted to those from which the 230
Schoenflies—Fedorov groups follow.

To make the problem tractable, we only consider
inhomogeneous linear symmetry operators. In addi-
tion, we consider as symmetry related only such
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points at which the complex function has equal
magnitude.

2. Definition of complex symmetry elements and
complex point and space groups
1. definition

A complex symmetry element is the combination
of an ordinary three-dimensional point or glide
symmetry element, S, with a compatible symmetry
element, ¢, of the Gaussian plane; the complex
symmetry element is denoted 2'=(S, o). Let n be the
order of 8, so that St=1I, the identity. Then, for
uniqueness of the complex function, the order of ¢
must be » or a factor of n, so that ¢»=1. This is
the condition of compatibility. This condition is
indefinite for symmetry elements, S, which contain
glide elements. For such symmetries, = is infinite.
We distinguish between what we shall term closed
and open complex symmetry elements. Let S’ be the
rotation-reflection portion of S (i.e. excluding glides),
and »n’ the order of 8’. If the order of ¢ is »’ or a
factor of n’, we call the operator a closed operator.
All other operators are open operators. It should be
observed that there is no possibility of open operators
in the space groups of positive real functions. The
simplest example of an open operator is the three-fold
screw axis in which, with each rotation-translation,
the function changes sign (i.e. ¢ is a rotation of =
in the Gaussian plane). The order of §’ is three, while
the order of o is two. The total operator, 2, produces
a unit cell which is twice as long as that which would
be measured by an observer who is insensitive to the
sign of the function.

With each of the crystallographically significant
glide symmetry operators an infinite number of open
complex symmetry operators can be constructed,
whereas the number of closed compatible operators
is finite.

The most general complex symmetry element con-
tains both glide elements in S and phase transforma-
tions, o, which are a function of the point r=(x, y, 2)
on which X' is acting. Basic characteristics of the two
spaces (physical and Fourier) limit the type of oper-
ators acting within them. Consider a symmetry
operation 2 defined by

F(Sr)=F(r) exp j&(r) (1)

where j=2ni=2n(—1)%, and £(r) is any function of
(z, ¥, z). The compatibility condition places restric-
tions on the form of &(r). The restrictions are consider-
ably less severe in an index space than in a continuous
periodic space, as in the latter space they must be
satisfied at every point in the space. Consider, for
example, a relationship of the form F(—=z,y,2) =
F(x,y, z) exp jé(x, y, 2). Applying this twice we ob-
tain the equation

F(x: Y, z)=F(x, Y, z) expj[é(x, Y, Z)+.§(——l‘, Y, Z)] (2)
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In both spaces this implies that either

&(x, y, 2)+ E(—x, y, z) =integer (3a)
or
F(z,y,2)=0. (30)

In the continuous space, equation (3a) implies
that the integer be a piece-wise constant function in
the regions where cquation (3b) is not satisfied. In
index space no such restriction exists. If, however,
continuous space is also periodic, then it is also
required that either F(}, y, z)=0 or that £(}, y, z) be
a half-integer. (In all that follows we shall measure
physical space coordinates in fractions of repeat
distances, so that the index space coordinates are
integers.) In our linear formalism this means that
&(x, y, 2) =nx, where n is an integer. The important
thing to note is that symmetries of the form of
equation (1) are compatible with complex periodic
functions and must form an important part of any
complex groups formalism.

In addition to operators which depend on coordinates
there are simple rotations of uth order in the complex
plane which change the complex quantity |F|expjé&
to |F|expj(é+1/u) and reflections across a line
under complex angle 2782 which transform |F| exp j&
to |F|expj(22—¢&). For 2=0, this operation of
order 2 describes the transition to the complex
conjugate and is denoted as «. Two planar examples
of such complex operators are given in Fig. 1.
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2 =(4,4) 2:(4

Fig. 1. Two planar examples of complex operators.
x and y are space coordinates.

It should be noted that at some points along the
symmetry operators the function must vanish if
phase symmetry relations (other than the identity)
are to hold. This is the complex analogue of the
requirement that an anti-symmetric function vanish
at the origin.

2. definition

A complex point group is a combination of com-
plex symmetry elements, all of which pass through
a single point (the origin), have no glide components,
and produce a single-valued function.

The enumeration of these groups can be divided
into three overlapping parts: (i) the groups in which
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o is independent of (z, y, 2), (ii) the groups in which
o is compatible with the periodic, continuous space,
(iii) the groups in which ¢ is compatible with an
index space. The groups of the first set have been
enumerated by us. We find 267 such complex crystal
classes. Their tabulation will be published separately,
as their knowledge is not essential for the further
development of our main problem. The third set of
groups are the major concern of this paper and will
be discussed in detail below.

3. definition

By a complex space group we understand any
combination of complex symmetry elements which
produces a single-valued, three-dimensionally periodic
function.

From these definitions onwards we can proceed in
two different ways. Either all possible combinations
of complex symmetry elements could be enumerated
in physical space and thence the equivalent of the
coordinate lists of the Schoenflies—Fedorov space
groups could be found or we can operate directly in
Fourier space. Since the special cases for physical

o=1: Schoenflies—Ferodov groups

o= t+ : Heesch—Shubnikov black-white groups
o=u: Belov’s color groups with u colors
o=x: another form of the black-white groups

have been widely discussed (International Tables for
X-ray Crystallography, 1952; Belov et al., 1956, 1957),
the former procedure would lead to much repetition.
Hence, it is the direct derivation in Fourier space to
which we proceed.

3. Symmetry transformations in Fourier space

To facilitate manipulation of Fourier space symmetry
operators, we express them in matrix form. As stated
above, we restrict ourselves to linear transformations
which leave the magnitude of the structure factor
invariant. This leaves the four independent variables
h,k,1, and @, where %, k, and [ are the index space
coordinates and ¢ is the complex phase of the structure
factor, measured in multiples of 2z. The most general
such linear transformation is given by the matrix
equation (writing (&, k, I) instead of (A1, he, ka))

h' h
Yo =t [ )+ @)
¢’ ¢

where «i; and f; must be real.

These transformation matrices can be reduced
immediately. Since, for fixed arbitrary symmetry,
@ can vary continuously, while the index space
coordinates are discontinuous and restricted to integer
values, the entries in the fourth column of the first
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three rows of xi; must be zero. In addition, since the
index space forms a Bravais lattice which must be
kept invariant, the submatrix of «y; for which ¢ and j
take on the values 1 to 3 must be the matrix represen-
tation of a three-dimensional point group operator.
We denote such a representation R,

Thus, purely from considerations of periodicity in
crystal space and retention of the most general func-
tional form for the Fourier transform, the linear
transformation can be reduced to

2 Ry 0\ R B
o\ 0\ [ & Ba i
S o)l M s ®)
@’ X4l X4z X43 Kaa ¢ Ba

Since all phase equations are understood to hold
(mod. 1), the «45(j=1,2,3) can be chosen in the
range 0 < x<1. The same holds for 8.

4. Index space point operators

The operators exhibited in equation (5) contain
translations in the index space. To obtain point
operators we set these translations, fi, f2, and B3
equal to zero.

The final reduction of the form of the operator
occurs when we demand that the function be single-
valued. This implies that the entire transformation
be of the same order, n, as Rp. Applying the transfor-
mation n times we obtain an equation in which a
function of the x4j’s, fa, h, k, and I plus a term (xaq)"g
must be equal to ¢ (mod. 1). Treating ¢ as an in-
dependent variable, this equation can be satisfied
for a number of choices of the agy’s with (x44)? equal
to unity. For operators of odd order this implies that
x«a44 equals unity while for the even order operators
xaq can take on the values plus or minus one. The
form of the linear transformations which are of
interest is then:

B - Ry 0 h 0

K -0 k 0

v oflz JTlo | ©
¢ Xa1 x4z oaz 1 @ Ba/

We can now impose further conditions on the index
space concerning its symmetry and thereby obtain
restrictions on the coefficients wai, a2, a3, B2 and the
sign of «44. Such conditions will be compatibility of
the weights in index space with the group properties
of Ry, or intrinsic symmetry properties of the weights
(which are not determined by Rp) like hermitian
character. The latter demands that F(h, k, 1) =
F*(—h, —k, —1) and is the condition for interpreting
the weights as the Fourier transforms of a real periodic
function in physical space. (In the case of Patterson
space the intrinsic conditions on the weights would
be a center of symmetry with respect to the origin and
positiveness). A discussion of R, induced symmetry
will be given for the tetragonal case in section 8.



1256

5. Hermitian index space operators

If we demand the hermitian character of a pair of
centrosymmetrically related points= + (k, k,1) as well
as of a second, symmetrically equivalent, pair =
+(h', k', '), we obtain the equation

e K V)= —q(=V, =k, =) ()
or
Xarth+ xask + xaal + xaaq (h, k, 1)+ fa
= —[—cx41h——cx42k—oc43l+ 0(44(7)(—-h, —k, —l)—{-ﬂq]

Since ¢(h, k, I)= —@(—h, —k, —1) we obtain

284=0 (mod. 1)
or

ﬂ4=0’ Jz‘ . (8)

In addition to this restriction on g, it is only
necessary to consider those transformations for which
xsa= + 1. Because the negative identity matrix is an
element of each hermitian space, we have the equality

R, 0 -1 0 0 0
0 0-1 0 0
0 0 0-1 0
Xa1 g2 x43 —1 0 0 0 -1
_ 0
0
— a1 — o4 —xas +1
R, 0
20
= 0 9
I—oa I—oxae 1oz 1
Hence, inclusion of ass= —1 leads to redundancy

in the derivation of those groups in Fourier space
which correspond to space groups of real functions
in physical space.

6. Hermitian index-space operators for space with
positive origin weight

Finally, the restriction that ¢(0) equal 0 for the
Fourier transform of a positive function implies that
Ba equals zero. This is a necessary but, by no means,
sufficient condition for making the weights the Fourier
transform of a positive function. Thus, the form of
the index space transformation for the Fourier trans-
forms of positive real functions is:

K R, N
K o\ [ &
@' X4y 042 xa3 1 @

with (0, 0, 0)=0.
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7. Index-space point groups

With the operators in the form of equation (6) we
can construct point groups. The condition that the
index space weight function be single-valued implies
that these transformations obey, in combination, the
point group generating relations obeyed by the R,
submatrices. Substitution of the matrices into the
relations leads to restrictions on the relative and
absolute values of the x4;’s and f4. For the operators
of the form of equation (6) there are an infinite
number of such combinations. This corresponds to the
existence of an infinite number of open symmetry
operators for complex functions in physical space.
However, for the operators of equations (8) and (10)
the number of such combinations is finite. In section 10
the derivation of the tetragonal point groups con-
structed from operators of equation (10) is exhibited.

In the remainder of this section some general
features of Index Space symmetries will be discussed.

Of major importance is the distinction between
primitive and centered index spaces which arises when
the (4, k, ) coordinates are chosen so as to automati-
cally express a particular symmetry of the Bravais
lattice. In a primitive index space, k, k, and [ assume,
independently, any integer values. In non-primitive
index spaces certain values, or combinations of values
are excluded so that conditions arise such as

h+k=2n (c-centered lattice),
h+k+1=2n (face-centered lattice),
h, k, l of same parity only (body-centered lattice).

These conditions affect the conclusions that can be
drawn from the substitution of the matrices in the
generating relations because they reduce the number
of points at which the generating relations have to
hold.

Some general properties of the Index space of
hermitian symmetry should be noted:

(1) If the transformations lead to ¢(h, k, 1) =
@(—h, —k, —1), then ¢ must be 0 or } and all such
F(h, k, 1) are real.

(if) Similarly, if ¢(k, k, [)=@(—hk, —k, +1), then it
follows that the plane !=0 of index space is a con-
jugate reflection plane; therefore @(%, k, 0) is O or }.

(iii) If @(h, k, I)= —@p(—h, —k, +1) then the plane
l=0 is a reflection plane and has itself a center of
conjugate inversion at the origin ¢(&, k, 0) =
—@(—h, —k,0).

(iv) In case the transformation adds a non-integral
number to the phase of a point (%', k', ") of index
space which is transformed into itself, the preservation
of uniqueness demands that |F(h', k', I')| =0.

Most of the operators of equation (6) require, in
addition to (iv), that the index space weight functions
vanish along planes of non-invariant points. If such
operators are excluded from consideration, there exist
a finite number of index space point groups which
correspond to the Fourier transforms of complex
functions with only closed symmetry operators.
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8. Index space symmetry.
The tetragonal system

In this section the method is illustrated by considering
the possible weight distributions under operators of
the type of equation (10) in the case of tetragonal
symmetry of the index space. There are, according to
Bravais, two different space lattices in this system.
The first is primitive. The second may be either face
or body centered, depending on the choice of axes.
In order to obtain the normal body-centered setting
in physical space, we choose a face-centered setting
for the index space, so that A+ k+1=2n.

The Bravais lattices have holohedral symmetry
4/mmm, but the distribution of weights can reduce
the symmetry of the index space function to that of
any of the complex point sub-groups of 4/mmm formed
by the equation (10) type operators, namely those
based on 4mm, 4/m, 4, 42m and 4.

We begin with the simplest symmetry, 4. There is
a four-fold axis parallel to the ! axis which we denote
by the matrix operator («). Then

0-1 0 0
@=lo o 1 o an
xq1 x4z ogz 1
The generating relation for the class is
h h
Fl=ton|f 12)
g ¢

or («)*=1I on the index space.
Raising («) to the fourth power, we obtain the
matrix equation

h I 0 /h
ko 0\ [k ‘
U A U (R (13)
@ 004x43 1 @
or p=4xsl+ ¢, (mod. 1), which implies that
4043l=0 (mod. 1) . (14)
Hence,
xa3=0, 114, %. (15)

This is a typical example of the compatibility re-
quirements. They fix the absolute value of certain
of the «’s. In particular, the order relations always
fix the «’s corresponding to the directions parallel to
rotation axes or mirror planes, and leave the other
«’s as arbitrary parameters. We shall consider as
equivalent all those groups which differ only by the
values of such arbitrary parameters. Finally, we note
that equation (15) holds in both the primitive and
face-centered index space, as [ can take on all values
in each.

Thus, in the primitive index space there are four
complex point groups, corresponding to the four
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values of x43. It should be noted that because the
direction of phase changes differs in sign with the sign
of I, the groups for which oas3=% cannot be made
equivalent to that for which «4=1. This is not the
case in the groups formed of operators of the type
of equation (6) in the special case a4 = xge=0xa3=0,
xaa=1 and B4=1} or £ (i.e., phase changes which are
independent of coordinates). Here the two groups are
identical and correspond to opposite ways of looking
down the l-axis. We shall now show that for entirely
different reasons, the groups are identical in the face-
centered index space. We can write the transformation
corresponding to the operator (x) as

F(—k, h,)=F(h, k, 1) exp jlj4

for oaz=4%. Since x4 and age are arbitrary, we can
also write this as

For the centered group, 2+k+!=2n. When I=4p+1,
where p is an integer, A+ k is odd and we have a phase
change equivalent to xss=4%, as (h+k)/2=14, (mod.1).
When l=4p+2, (h+k)/2=0, (mod. 1), but 3l/4=1/4,
(mod. 1). When l=4p+3 or 4p the situations are
exactly the same. Thus the restriction A+k+1=2n
makes the group of xs43=} equivalent to the group
of xsz=$%. In the same way, agz=1} is equivalent to
x43=0. We have, then, six non-equivalent groups of
class 4 in the index space.

The neat crystal class is 4. This group has a four-
fold rotary-inversion axis parallel to I, denoted ().

01 0 0
=L 0 0 0
“lo 0o 1T o

Va1 Va2 vaz 1/

(15)

We require that (v)*=1 on the index space. We find,
however, by matrix multiplication, that

1 0 0 0
0O 1 0 0
4 —
@ =10 0 1 o (16)
o 0 0 1

Thus, »a1, vs2, and »43 are arbitrary parameters and
there are two groups in the class, corresponding to
the two index spaces.

In class 4/m we introduce a mirror plane normal
to («}), which we denote (y). Then

1 0 0 0
=19 o 3 of (17)
var yaz yas 1/
The group has the three generating relations,
(P=L (x)(y)=(»)(x), and (x)t=I. (18)

The phase relation obtained from (y)2=1 is
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2y41h+2‘y42k=0, (mod 1) . (19)
In both spaces this implies
‘}/4]_=0 or %
y42=0 or } (20)

and pa3 is arbitrary.
The second generating relation yields the equation

(a1 + Yar)h + (xaz+ paz)k + (Y43 — oas)l
= (ya2+ oa1)h + (oa2— yar)k + (Y3 + xxas)l

or
(ya1— ya2)h+ (yar+ yaz)k — 2043l =0 . (21)
For the primitive lattice this implies
xa3=0 or } 22)

Y4 = Y42 .
It should be noted that the alternative solution,
ya1=1- 42, yields no new information as y42=0 or }.

For the centered lattice we can have either equation
(22) holding or

xa3=% or 2 (23a)
ya=0, ya=%
yar=3, yu=0. (23b)

Since the 2 and k axes are identical, the two situations
described in equation (23b) are equivalent.

This example also shows how the existence of a
smaller number of index space points on which the
compatibility relations must hold allows operator
combinations which are inconsistent with a primitive
index space. Then, for the primitive lattice, the

possible combinations of determined parameters are
listed in Table 1.

Table 1. Allowed groups, class 4/m, primitive index space

Kg3 7417 V42 Space group
0 0 P4/m
0 3 Pa/n
4 0 P4,/m
P 3 Pdyn

For the centered index space, the possible com-
binations are listed in Table 2.

Table 2. Allowed groups, class 4/m, face-centered
index space

K43 741 Va2 Space group
0 0 0 14/m
3 0 0
0 P Py
3 b3 3
1 4 0 14l
i ] 0

However, examining Table 2 we find that the first
and second, third and fourth, and fifth and sixth
sets of values are equivalent, respectively, for the
same reasons that the axes were equivalent in the
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face-centered groups of class 4. In addition, using the
first set of values we have

Fh, k, —ly=F(h, k1) (24)
while the third set gives the relation

We note that ya3 is arbitrary. Setting y43=1% in the
third set, equation (25) becomes

Fh, k, —l)=F(h, k,1) exp [j(h+k+1)2)=F(h, k, 1)
(26)
as (h+k+1)=2n. Thus, the independent groups are
the first and fifth, all others being equivalent to these.

We now examine the class 4mm. In addition to («)
we have the mirror planes given by

I 0 0 o 0 1 0 0
o= 88 Sa-(t o0 e
a1 ds2 das 1 €41 &42 €43 1

and the generating relations
(a)t=(d)2=(e)2=1, (28)
(x)(8)=(8)(x)?=(e) . (29)
(6)2=1 implies that
2 (042k + dal)=0, (mod. 1) (30)
while (&)2=1 requires
(ea1+ €a2) (B + k) +2e43l=0, (mod. 1) . (31)
Finally, the condition that («x)(d)=(g) yields
(0a1— xar— €a1)h + (Oaz + x40 — £42)k
+ (043 + xaz— €a3)l =0, (mod. 1). (32)

In the primitive index space, equations (30) and
(31) imply that

S42=0, }
043=0, }
84220, %
£41=¢&42 . (33)

Finally, the coefficient of ! in equation (32) com-
bined with equation (23) implies that x43 cannot be
1 or #, but that

0(4320, % . (34)
Table 3. Allowed groups, class 4mm, primitive
index space
g3 4o Os3 £43 Space group
0 0 0 0 Pdmm
0 3 0 0 P4bm
3 0 3 0 P4,cm
3 3 b3 0 P4,nm
0 [} Py 3 Pdcc
4] 3 3 4 Panc
3 0 0 b3 Pa,mc
3 3 0 3 Pd4,be
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We thus have four parameters which can take on
the values O or }. The possible combinations of these
parameters are those which fulfill equation (32).
These are listed in Table 3. We also note that although
the parameters da, a1, 42, €41, and ez are not
absolutely determined, their relative values are fixed.

In the face-centered index space, in addition to
the possibilities listed above, equation (31) admits
the solution

enn=14, § (35a)
and
eq=¢cq2=1% or }. (356)
With es3=% or §, the third term of equation (32)
combined with equation (30) implies that xs3=1} or §.
Under these restrictions, some 30 combinations of
parameters are possible. Of these, only four are
independent. These are listed in Table 4. It should
be noted that the mirror planes for which a1, oae,
and x4z are all }, rather than the usual 0 or i, are
a new phenomenon which appears only for the
diagonally placed mirror plane in the centered index
space. This crystal class is the first in which the
relative values of the otherwise arbitrary paramecters
are determined.

Table 4. Allowed independent groups, class 4mm,
Jace-centered index space

Space

K43 sz gy €13 €41 =& 8roup

0 0 0 0 I4mm

] 0 0 } } I4,md
} 0 3 + b T4,cd
0 0 3 0 0 I4cm

The groups which we have derived thus far illustrate
all the phenomena which are encountered in a complete
derivation of the groups formed by operators of the
type of equation (10). To avoid repetition, we leave
the remainder of the groups unlisted.

9. Physical interpretation of the
index-space point groups

It has been shown, thus far, that there exists a set
of operators which express the possible linear point
symmetries of a complex function defined on an
index space. These operators form complex point
groups on the index space. By restricting the operators
to be compatible with hermitian symmetry and to
contain no index-independent phase transformations
the symmetries of the point groups must be those
of the structure factors, since these are the Fourier
transforms of positive real, periodic functions. The
more general operators express the symmetry proper-
ties of the structure factors belonging to black-white,
colored, or complex space groups.

We now examine in greater detail some further
aspects of the duality between physical and Fourier
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Index space. We begin with equation (6). This equation
states, choosing «as= +1, that

F(RpK)=F(K) exp [j(xarh+ xazk + xasl) +jfa] (36)

where K=(h, k,1). F(K) is the coefficient in the
Fourier series which describes the complex function
o(z, y, z) or p(r). Hence

o(r)= ¢ F(K) exp j(K.r) . (37)

This can also be written, by a change of the order
of summation, as

o(r)=2x F(RK) exp j(R,K.r)
=2y F(R,K) exp j(R;'R,K. R, 'r)

as the scalar product is invariant under such a trans-
formation. Furthermore, using equation (36),

o(r)=Zx F(K) exp {j[(K.R;'r)+ K. x+ f4]}
where o= (xa1, 42, x43). Hence,
o(r)=exp (jfa) Zx F(K) exp [jK. (R, 'r+ )] .

But, examining equation (37), we find that this
implies
o(r) =cxp (jBs)o(R; '+ ). (33)
Thus, for each symmetry operator in Fourier space
there is a complex symmetry operator in physical
space. The physical space operator is a space group
operator, in general, as « represents it translational
part. Thus the groups derived and listed in the tables
bear a one-to-one correspondence to the Schoenflies—
Federov space groups. For this reason, the tables
contain the space group symbol. We have found that
when f4=0, the condition that the Index space
operators be of the same order as R, leads to restric-
tions on the components of x parallel to the operator.
These are just the conditions for the glide elements
to be some multiple of 1/n, e.g., that a four-fold
screw axis have a pitch of 1, 2, or 3 quarters of an
identity period. This rule was broken by the diagonal
mirror plane of 4mm in the centered index space.
Here there could be &1 = a42 = x4s=1%. This is because
the d glide is an allowed operation in the body-
centered physical space. What we have termed the
arbitrary components of « correspond to translation
portions of the physical space operator which arise
from the displacement of the operator from the origin.
In space groups where the relative positions of the
operators remain arbitrary, such as 4/m, these com-
ponents of x remain arbitrary. In a group where the
relative positions of the operators are fixed, as, for
example, in class 4mm where the positions of the four-
fold axis relative to the intersection of the mirror
planes is determined by space group consistency
relations, we have conditions in Fourier space which
fix the relative values of the corresponding com-
ponents of «.
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Similarly, the properties (i) and (ii) listed in the
section Index-Space Point Groups correspond to a
center of symmetry in physical space forcing the
structure factor to be real. Property (iv) is a represen-
tation of the fact that screw axes and glide planes
lead to systematic absences in the index space.

We have noted that if f4=0 or }, the symmetry
operator (6) represents the symmetry of a real function.
The groups of such operators are the structure factor
symmetry groups corresponding to the black-white
groups.

With 8, free to take on all values permitted by the
compatibility relations, we have, as demonstrated by
equation (37), the index-space analogues of the pos-
sible groups in which the phase change in independent
of the coordinates. These groups have, in general,
restrictions which do not appear with the other groups.
That is, they require the vanishing of the function
on planes of non-invariant points. Consider an n-fold
axis parallel to [ in index space and denoted by (xx).
Then

cos 2xt/n sin 2mfn O O 0
v | —sin 2zx/n cos2m/n O O 0
(xa)=1 ¢ 0 10 +(0 (39)
x4 X2 xg3 1/ \fa
Raising this operator to the nth power we get
1 0 O 0 0
(o 1 0 o 0
(=10 0 1 0o)*| 0 (40)
0 0 nx43 1 nﬂ4
Then
(noxas)l+nfs=0, (mod. 1). (41)

In discussing this equation, we have to distinguish
two cases:

(a) The equation is to be fulfilled for all values of /.
It then shows (for [=0) that fa=s/n, where s is any
integer, and, by forming the difference of the con-
ditions for  and [+ 1, that «43=¢q/n, with ¢ an integer.
These solutions give the normal screw axes with phase
change. Similarly, complex glide mirror planes are
obtained.

(b) The equation is to be fulfilled only on an equi-
distant set of planes. This is the case if F(h, k,1)=0
for all values [+ L,, where L,=tl+ Ly (t, Lo integers).
The same procedure as before now determines «as
and B4 as

oag3=q [tn, Ba=s'[n— Loxgs, (42)
where ¢’ and s’ are arbitrary integers, and ¢ and Lo
assumed integers. These values of the coefficients
describe ‘open’ complex screw axes. If ¢ is the identity
period which would be obtained with the ‘closed’
operation of an n-fold screw axis, the ‘open’ operator
characterized by (42) yields, after n-fold application,
the glide ¢/t and phase shift — Loq’/t. The true identity
period is therefore ¢c and the order of the operator tn.

There are apparently two types of operators on

SYMMETRY OF FOURIER SPACE

complex physical-space functions which have not
appeared in the index-space formalism. The first is

complex conjugation. Equation (6), with ag=—1
states
N F(R,K)=F*(K) exp [j(x.K+ )] . (44)
WHHDE 1) - 5 F(R,K) exp [(RoK 1))
we have
o(r)=2Xx F*(K) exp {j[K.(R,'r+ &)+ fa]}
o o(r)=exp (jBa)o*(Byr — ) , (45)

where R, is the product of the inversion and R;*.
It follows that a set of complex point groups can be
constructed in index space for which ags=—1, and
where the corresponding physical space groups have
crystal classes which are determined by R, rather
than by R,.

The second type of complex space groups which do
not appear to have Fourier space analogues are those
in which the operators have phase transformations
which vary with the coordinates. We have shown
that such an operation in the index space implies a
translational component in physical space. It follows
that the Fourier space analogues of such physical
space groups are the above-derived index space point
groups consistently displaced from the origin. By
consistently, we mean that they leave the Bravais
lattice invariant and can still obey the compatibility
relations. The simplest example of this is the mirror
operator normal to % displaced »/2 from the origin
in the % direction. The matrix representation of this
is

1 0 0 0 h n
)4 0 1 0 0 k 0 .
r 1=lo o 1 oflz |70 | @O
¢’ o 0 o0 1 @ 0
or
Fh+n, k,))=F(h, k, 1) (47)
which implies
o(x, y, )= 0(Z, y, 2) exp (jnx) . (48)

For » odd we have the operators discussed im-
mediately after equation (3) for which F(},y, 2)=0,
while for » even this requirement need not hold.

Other types of combinations of operators appear
to be possible forms for the index space symmetry
corresponding to the last-named groups. An example
is a group in which the four-fold axis is separated
from the intersection of the mirror planes in an index-
space group of the form 4mm. It is easily shown,
however, that such a configuration generates perio-
dicity in the index space and thus robs physical space
of its continuity in one or more directions.

10. Duality of index space and physical space

The results of the work may be summarized as
follows. There is an exact correspondence between
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point groups in physical and Fourier space under the
following condition. The physical space point group
has no phase changes which are a function of coor-
dinates. A space group isomorphous with a point group
also yields this point group as the index space sym-
metry. Translations introduced in one space imply,
in the other, phase factors which are linear functions
of the coordinates.

There is a special type of physical space structure
in which the groups possible in the two spaces become
identical. Consider the case in which the physical
space structure consists of complex point masses
located at points which are rational fractions of the
repeat distances. The complex density can be written

o(r)=25g(p)d(r—p) (47)
where d(r—p) is the Dirac delta function and
p = (p1/m1, p2/ne, p3/ns), with p;=0,1,2, ... n;. (48)
Then
F(K) = \ Z9(p)6(r —p) exp (—jK.r)dV
= 2Zp(g(p) exp (—jK.p). (49)

In this case Fourier space is periodic with repeat
distances (ny, ne, #3). Similarly, with the simple re-
scaling of coordinates, z;=nz;, physical space becomes
an index space in the sense in which we have defined it.
The two spaces are both periodic index spaces of
complex functions and must have the same symmetry
groups. The Fourier space symmetry group corre-
sponding to a given physical space group is not,
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of course, identical to that physical space groups, but
the sets of possible groups are identical.

Still another interesting limit exists. This is the
transition from an index space to a continuous Fourier
space. It can be shown, as a generalization of the
discussion of equation (1) in section 2, that only the
parameters called arbitrary, i.e. those which do not
enter into the order equation can be non-zero. This
is because the order equation cannot hold otherwise
in a continuous space. We know that the non-arbitrary
parameters correspond to glide elements which gener-
ate infinite periodicity in one or more directions.
Thus, the existence of a continuous Fourier space
rules out those Fourier space operators which cor-
respond to operators in physical space which generate
infinite periodicity.
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The Crystal Structure of the Low-Melting Form of Oleic Acid
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The low-melting form of oleic acid is pseudoorthorhombic with ¢ =9-51, =474 and ¢=40-6 A.
The space group is P2,/a and there are four molecules per cell. The molecules arc bent at the cis-
double bond. The two chain parts have the usual planar zig-zag conformation and adopt a side
packing 0’ || not previously found in long-chain compounds. The chain axes of the two parts have
equal angles of tilt (56-5°) to the (001) plancs but are tilted in opposite directions. The acid dimers
are held together by hydrogen bonds (2:64 A) around centres of symmetry and form a layer structure

normal for long-chain compounds.

Introduction

It has long been known (Kirschner, 1912) that oleic
acid is dimorphous. Several observations of two
melting points have been reported; Lutton (1946)

gives the values 13-3° and 16-2°. He investigated the
X-ray powder patterns of the two forms and reported
the long spacing, d(001), values of 40-5 A and 42-2
(84-4) A respectively.

The only single-crystal data given for unsaturated



