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The symmetry group represented in crystal space by the array of symmetry elements, or by the 
coordinates of equivalent points, is equally contained in the expressions of the geometrical structure 
factor; it should therefore be possible to derive the 'symmetry'  of the latter directly in Fourier 
space without any reference to crystal space. This program involves the distribution of complex 
weights on the lattice points of the reciprocal lattice. The relative phases of the weights at symmetry- 
related points can be determined by considerations of uniqueness. This leads to the Fourier-space 
equivalent of complex symmetry groups in crystal space (including the black-white and colored 
groups). In order thence to arrive at the 230 Fourier transforms of the Schoenflies-Fedorov groups 
a restriction has to be placed on the phase relations which corresponds to the exclusion of complex 
and antisymmetry elements in crystal space. 

1. The problem and plan of this paper 

The Fourier  t ransform of a funct ion in physical  space, 
e.g. the charge density,  ~o(x, y, z), in a crystal,  is a 
complete image of this funct ion in reciprocal or Fourier  
space. Hence any  t ransformat ion  proper ty  of the 
funct ion in physical  space, such as produced by sym- 
met ry  elements,  must  have its equivalent  in Fourier 
space. In  fact, the 'geometrical s tructure factors'  as 
listed for each space group in the International Tables 
for X-ray Crystallography (1952) contain impl ic i t ly  
the s y m m e t r y  properties in Fourier  space. These 
symmet ry  properties are not easily recognizable. Only 
those point  s y m m e t r y  elements which pass through 
the origin in physical  space give rise to equivalent  
s y m m e t r y  elements about  the origin of Fourier  space, 
whereas other s y m m e t r y  elements in physical  space 
lead to phase relations between equivalent  points in 
Fourier  space. These can, of course, be found from the 
explicit  geometrical structure factors (Buerger, 1949, 
1960; Waser, 1955; Nowacki, 1950), but  it should be 
possible to derive them in a direct and, in tha t  sense, 
more sat isfactory manner  by applying the essential 
group-theoretical  properties of space groups direct ly 
to Fourier  space, instead of following the present 
circuitous way of first operating in physical  space 
so as to f ind the possible combinat ions of symmet ry  
elements (i.e. the 230 space groups), then listing the 
coordinates of equivalent  points, next  making  the 
Fourier  t ransformat ion  by writ ing down the geom- 
etrical  s tructure factors and f inal ly  discussing these 
in view of relations expressing the symmet ry  in 
Fourier  space. 

. . . . . . . . . . . . . . . .  

* This work was partially supported by National Science 
Foundation Pre-Doctoral Fellowships and the U.S. Office of 
Naval Research. 

In  the following, a direct approach to this problem 
is offered. I t  differs from the problem of establishing 
the 230 Schoenfl ies-Fedorov space groups in physical  
space in two characteristic respects: 

(i) Periodici ty in physical  space does not correspond 
to periodici ty in Fourier  space, but  instead to the 
reduction of Fourier space to the set of reciprocaJ 
latt ice points-- i .e . ,  Fourier  space is reduced to the 
'index space' of the Fourier  coefficients F(h, k, 1), 
and is not a continuous space. I t  is reduced to one 
of the 14 Bravais  lattices, and m a y  have any  com- 
pat ible  symmetry .  

(ii) Even  though the funct ion in physical  space 
m a y  be real (or even positive like Q(x, y, z)), the 
funct ion in Fourier  space is, in general, complex. 
For this reason the s y m m e t r y  we expect to recognize 
is compounded of s y m m e t r y  elements of three- 
dimensional  space character (as in physical  space) and 
of symmet ry  elements appropriate  to the Gaussian 
plane of complex numbers.  

In  order not to unnecessari ly restrict  the general i ty 
of our method,  and so as to preserve, as long as 
convenient,  the dua l i ty  between physical  and Fourier  
space, we star t  t)y defining what  we unders tand  by 
complex symmet ry  elements, point groups, and space 
groups. Applying these definit ions to physical  space, 
the t)lack-white groups (Belov, Neronova & Smirnova,  
1957) follow when the phase changes are restr icted 
to 0 or ~, and the colored (Belov & Tarkhova,  1956) 
space groups include more general phase changes. 
If no phase change is allowed, the complex symmet ry  
elements are restricted to those from which the 230 
Schoenfl ies-Fedorov groups follow. 

To make the problem tractable,  we only consider 
inhomogeneous l inear s y m m e t r y  operators. In  addi- 
tion, we consider as symmet ry  related only such 
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points at which the complex function has equal 
magnitude. 

2. Definition of complex  s y m m e t r y  e lements  and 
complex  point and space groups 

1. definition 
A complex symmetry element is the combination 

of an ordinary three-dimensional point or glide 
symmetry  element, S, with a compatible symmetry  
element, (~, of the Gaussian plane; the complex 
symmetry  element is denoted Z =  (S, a). Let n be the 
order of S, so tha t  Sn=I ,  the identity. Then, for 
uniqueness of the complex function, the order of a 
must be n or a factor of n, so tha t  an=I.  This is 
the condition of compatibility. This condition is 
indefinite for symmetry  elements, S, which contain 
glide elements. For such symmetries, n is infinite. 
We distinguish between what we shall term closed 
and open complex symmetry  elements. Let S' be the 
rotation-reflection portion of S (i.e. excluding glides), 
and n' the order of S'. If the order of (~ is n' or a 
factor of n', we call the operator a closed operator. 
All other operators are open operators. I t  should be 
observed tha t  there is no possibility of open operators 
in the space groups of positive real functions. The 
simplest example of an open operator is the three-fold 
screw axis in which, with each rotation-translation, 
the function changes sign (i.e. (~ is a rotation of 7r 
in the Gaussian plane). The order of S' is three, while 
the order of ~ is two. The total  operator, X, produces 
a unit cell which is twice as long as tha t  which would 
be measured by an observer who is insensitive to the 
sign of the function. 

With each of the crystallographically significant 
glide symmetry  operators an infinite number of open 
complex symmetry  operators can be constructed, 
whereas the number of closed compatible operators 
is finite. 

The most general complex symmetry  element con- 
tains both glide elements in S and phase transforma- 
tions, (~, which are a function of the point r =  (x, y, z) 
on which Z is acting. Basic characteristics of the two 
spaces (physical and Fourier) limit the type of oper- 
ators acting within them. Consider a symmetry  
operation 2_." defined by 

F(Sr )  = F(r)  exp j~(r) (1) 

where j=27ei=27e(- 1)½, and ~(r) is any function of 
(x, y, z). The compatibility condition places restric- 
tions on the form of ~(r). The restrictions are consider- 
ably less severe in an index space than in a continuous 
periodic space, as in the lat ter  space they must  be 
satisfied at  every point in the space. Consider, for 
example, a relationship of the form F ( - x ,  y, z ) =  
F(x, y, z) exp j~(x, y, z). Applying this twice we ob- 
tain the equation 

F ( x , y , z ) = F ( x , y , z ) e x p j [ ~ ( x , y , z ) + ~ ( - x , y , z ) ] .  (2) 

In both spaces this implies tha t  either 

~(x, y, z) + ~( -- x, y, z) ---- integer (3a) 
or 

F(x, y, z)= 0 .  (3b) 

In the continuous space, equation (3a) implies 
tha t  the integer be a piece-wise constant function in 
the regions where equation (3b) is not satisfied. In 
index space no such restriction exists. If, however, 
continuous space is also periodic, then it is also 
required tha t  either F(½, y, z )=0  or tha t  ~(½, y, z) be 
a half-integer. (In all tha t  follows we shall measure 
physical space coordinates in fractions of repeat 
distances, so tha t  the index space coordinates are 
integers.) In our linear formalism this means tha t  
~(x, y, z)=nx, where n is an integer. The important  
thing to note is tha t  symmetries of the form of 
equation (1) are compatible with complex periodic 
functions and must form an important  part  of any 
complex groups formalism. 

In addition to operators which depend on coordinates 
there are simple rotations of # th  order in the complex 
plane which change the complex quant i ty  IF[ exp j~  
to IF[ e x p j ( ~ + l / t t  ) and reflections across a line 
under complex angle 2~.(,) which transform IF[ exp j~  
to IF[ exp j (2 .Q-~) .  For /2=0 ,  this operation of 
order 2 describes the transition to the complex 
conjugate and is denoted as .. Two planar examples 
of such complex operators are given in Fig. 1. 

Y y 
F* 

FjF~x x F F 

~. -- (4 ,4)  Z : (4, .) 

Fig. 1. Two planar examples of complex operators. 
x and y are space coordinates. 

I t  should be noted tha t  at  some points along the 
symmetry  operators the function must vanish if 
phasc symmetry  relations (other than the identity) 
are to hold. This is the complex analogue of the 
requirement tha t  an anti-symmetric function vanish 
at the origin. 

2. definition 
A complex point group is a combination of com- 

plex symmetry  elements, all of which pass through 
a single point (the origin), have no glide components, 
and produce a single-valued function. 

The enumeration of these groups can be divided 
into three overlapping parts:  (i) the groups in which 
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a is independent  of (x, y, z), (ii) the groups in which 
is compatible  with the periodic, continuous space, 

(iii) the  groups in which a is compatible with an 
index space. The groups of the first  set have been 
enumera ted  by  us. We find 267 such complex crystal  
classes. Their  t abu la t ion  will be publ ished separately,  
as their  knowledge is not essential for the fur ther  
development  of our main  problem. The th i rd  set of 
groups are the major  concern of this paper  and will 
be discussed in detail  below. 

three rows of a~j must  be zero. In  addit ion,  since the 
index space forms a Bravais  lattice which must  be 
kept  invar iant ,  the submat r ix  of a~j for which i and j 
take on the values 1 to 3 must  be the mat r ix  represen- 
ra t ion of a three-dimensional  point  group operator. 
We denote such a representat ion Rv. 

Thus, purely  from considerations of periodici ty in 
crystal  space and retention of the most general func- 
t ional  form for the Fourier  t ransform, the l inear 
t ransformat ion  can be reduced to 

3. definition 
By a complex space group we unders tand  any  

combinat ion of complex s y m m e t r y  elements which 
produces a single-valued, three-dimensional ly  periodic 
function. 

F rom these definit ions onwards we can proceed in 
two different ways. Either all possible combinat ions 
of complex s y m m e t r y  elements could be enumera ted  
in physical  space and thence the equivalent  of the 
coordinate lists of the Schoenfl ies-Fedorov space 
groups could be found or we can operate direct ly in 
Fourier  space. Since the special cases for physical  
space 

a = I :  Schoenfl ies-Ferodov groups 
a =  + • Heesch-Shubnikov  black-white groups 
a = # "  Belov's color groups with # colors 
a = .  : another  form of the black-white groups 

have been widely discussed (International Tables for 
X-ray Crystallography, 1952; Belov et al., 1956, 1957), 
the former procedure would lead to much repetit ion. 
Hence, it is the direct derivat ion in Fourier  space to 
which we proceed. 

3. S y m m e t r y  t r a n s f o r m a t i o n s  in Four ier  space  

To facil i tate manipula t ion  of Fourier  space s y m m e t r y  
operators, we express them in mat r ix  form. As stated 
above, we restrict  ourselves to linear t ransformat ions  
which leave the magni tude  of the structure factor 
invar iant .  This leaves the four independent  variables 
h, k, l, and ~v, where h, k, and 1 are the index space 
coordinates and ~v is the complex phase of the structure 
factor, measured in mult iples of 2~. The most general 
such linear t ransformat ion  is given by the mat r ix  
equat ion (writing (h, k, l) instead of (hi, h~, h.~)) 

l' = (so,j) +(flj)  (4) 

q~' q9 

where ai j  and  flj mus t  be real. 
These t ransformat ion  matr ices  can be reduced 

immediately .  Since, for f ixed a rb i t ra ry  symmet ry ,  
q~ can va ry  continuously,  while the index space 
coordinates are discontinuous and restricted to integer 
values, the entries in the fourth column of the first 

A C  1 5 - - 8 1  

k' 
l' 
(p'  (il) (5) 

Since all phase equations are understood to hold 
(mod. 1), the a4j ( j = l ,  2, 3) can be chosen in the 
range 0 _< ~ < 1. The same holds for ft. 

4. I n d e x  space  po int  o p e r a t o r s  

The operators exhibi ted  in equat ion (5) contain 
t ranslat ions in the index space. To obtain point  
operators we set these translations,  f l ,  fie, and fla 
equal to zero. 

The final reduction of the form of the operator 
occurs when we demand  tha t  the funct ion be single- 
valued. This implies tha t  the entire t ransformat ion 
be of the same order, n, as Rv. Applying the transfor- 
mat ion  n t imes we obta in  an equat ion in which a 
funct ion of the a41's, f14, h, k, and 1 plus a term (a44)n~ 
must  be equal to ~ (mod. 1). Treat ing ~ as an in- 
dependent  variable,  this equation can be satisfied 
for a number  of choices of the ~4j's with (c¢44)" equal  
to unity.  For operators of odd order this implies tha t  
a44 equals un i ty  while for the even order operators 
.a44 can take on the values plus or minus one. The 
form of the l inear t ransformat ions  which are of 
interest  is then:  

r 1 + 0 . (6)  

We can now impose further  conditions on the index 
space concerning its s y m m e t r y  and thereby obtain 
restrictions on the coefficients ~4t, a42, ~43, f4 and  the 
sign of ~44. Such conditions will be compat ibi l i ty  of 
the weights in index space with the group properties 
of Rv, or intr insic s y m m e t r y  properties of the weights 
(which are not de termined by Rv) like hermitian 
character. The la t ter  demands tha t  F(h ,  k, l ) =  
F * ( - h ,  - k ,  -1)  and is the condition for interpret ing 
the weights as the Fourier  t ransforms of a real periodic 
funct ion in physical  space. (In the case of Pat terson 
space the intrinsic conditions on the weights would 
be a center of symmet ry  with respect to the origin and  
positiveness). A discussion of Rv induced symmet ry  
will be given for the tetragonal  case in section 8. 
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5. Hermitian index space ope ra to r s  

If we demand the hermitian character of a pair of 
centrosymmetrically related points = + (h, k, l) as well 
as of a second, symmetrically equivalent, pair = 
+ (h', k', l'), we obtain the equation 

cf(h', k', V)= - ~ ( - h ' ,  -~:', - V )  (7) 
o r  

,~4th + ~x42k + ¢x4al + ~xaaq~ (h, k, l) + fla 

= - -  [ - -  ~ 4 1 h  - -  0¢42k - ~x431 + ~x44q)( - h ,  - k ,  - 1) 3 t- ~ 4 ] .  

Since ~(h, k, 1) = - ~ ( -  h, - k, - l) we obtain 

2fl4 = 0 (rood. 1) 
o r  

~ 4 = 0 ,  ½ .  (8 )  

In addition to this restriction on fl, it is only 
necessary to consider those transformations for which 
~44 = + 1. Because the negative identi ty matr ix is an 
element of each hermitian space, we have the equality 

tRp  )i,00i)0, 0 .... 0 0 - l 
~;t ai2 cxa3 1 0 0 0 0) 

= o 

( /~v o . : i) 
~ 0 

\ i Z  ~ ; I ~ i Z ~ X 2 i Z  ~aa ..... 

(9) 

Hence, inclusion of a a 4 = -  1 leads to redundancy 
in the derivation of those groups in Fourier space 
which correspond to space groups of real functions 
in physical space. 

6. Hermitian index-space operators for space wi th  
positive origin weight 

Finally, the restriction that  ~(0) equal 0 for the 
Fourier transform of a positive function implies tha t  
fla equals zero. This is a necessary but, by no means, 
sufficient condition for making the weights the Fourier 
transform of a positive function. Thus, the form of 
the index space transformation for the Fourier trans- 
forms of positive real functions is: 

(.) i Rp 
k '  = 

:X43 

0) .)00 ,. (10) 

with q~(0, 0, 0 )=  0. 

7. Index-space point groups 

With the operators in the form of equation (6) we 
can construct point groups. The condition that  the 
index space weight function be single-valued implies 
tha t  these transformations obey, in combination, the 
point group generating relations obeyed by the Rv 
submatrices. Substi tution of the matrices into the 
relations leads to restrictions on the relative and 
absolute values of the ~4j's and f14. For the operators 
of the form of equation (6) there are an infinite 
number of such combinations. This corresponds to the 
existence of an infinite number of open symmetry  
operators for complex functions in physical space. 
However, for the operators of equations (8) and (10) 
the number of such combinations is finite. In section 10 
the derivation of the tetragonal point groups con- 
structed from operators of equation (10) is exhibited. 

In the remainder of this section some general 
features of Index Space symmetries will be discussed. 

Of major importance is the distinction between 
primitive and centered index spaces which arises when 
the (h, k, l) coordinates are chosen so as to automati- 
cally express a particular symmetry  of the Bravais 
lattice. In a primitive index space, h, k, and 1 assume, 
independently, any integer values. In non-primitive 
index spaces certain values, or combinations of values 
are excluded so tha t  conditions arise such as 

h + k = 2n (c-centered lattice), 
h + k + 1 = 2n (face-centered lattice), 
h, k, 1 of same par i ty  only (body-centered lattice). 

These conditions affect the conclusions tha t  can be 
drawn from the substi tution of the matrices in the 
generating relations because they reduce the number 
of points at  which the generating relations have to 
hold. 

Some general properties of the Index space of 
hermitian symmetry  should be noted: 

(i) If the transformations lead to ~(h, k, l ) =  
q~(-h, - k ,  - l ) ,  then ~ must be 0 or ½ and all such 
F(h, k, l) are real. 

(ii) Similarly, if q(h, k, l )=  ~ ( - h ,  - k ,  +l) ,  then it 
follows that  the plane / = 0  of index space is a con- 
jugate reflection plane; therefore ~(h, k, 0) is 0 or ½. 

(iii) If ~(h, k, l ) = -  ~ ( - h ,  - k ,  +l)  then the plane 
/ = 0  is a reflection plane and has itself a center of 
conjugate inversion at the origin q~(h, k, 0 ) =  
- ~ , ( - h ,  - L  O). 

(iv) In ease the transformation adds a non-integral 
number to the phase of a point (h', k', l') of index 
space which is transformed into itself, the preservation 
of uniqueness demands tha t  ]F(h', k', l')l =0.  

Most of the operators of equation (6) require, in 
addition to (iv), tha t  the index space weight functions 
vanish along planes of non-invariant points. If such 
operators are excluded from consideration, there exist 
a finite number of index space point groups which 
correspond to the Fourier transforms of complex 
functions with only closed symmetry  operators. 
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8. I n d e x  space  s y m m e t r y .  
T h e  t e t r a g o n a l  s y s t e m  

In  this section the method is i l lustrated by  considering 
the possible weight dis t r ibut ions under  operators of 
the type of equat ion (10) in the case of tetragonal  
s y m m e t r y  of the index space. There are, according to 
]3ravais, two different space lattices in this system. 
The first is pr imit ive.  The second m a y  be either face 
or body centered, depending on the choice of axes. 
In  order to obta in  the normal  body-centered sett ing 
in physical  space, we choose a face-centered sett ing 
for the index space, so tha t  h + k + 1 = 2n. 

The Bravais  latt ices have holohedral  symmet ry  
4/mmm, but  the dis t r ibut ion of weights can reduce 
the s y m m e t r y  of the index space funct ion to tha t  of 
any  of the complex point  sub-groups of 4/mmm formed 
by  the equat ion (10) type operators, name ly  those 
based on 4mm, 4/m, 4, 42m and 4. 

We begin with the simplest symmetry, 4. There is 
a four-fold axis parallel  to the 1 axis which we denote 
by  the mat r ix  operator (a). Then 

0 - I 0 (i) I 0 0 
( ~ ) =  0 0 1 " 

(X41 (X42 0~43 

The generating relation for the class is 

1 = (~)4 1 

, o f  q ,  

or (~)4__I on the index space. 

( l l )  

(12) 

Raising (a) to the fourth power, we obta in  the 
mat r ix  equat ion 

i)( 6 0 4 ~ 4 ~  ..... 

or ~----4~43l-~-(~, (mod. 1), which implies tha t  

(13) 

4a4al----0 (mod. 1).  (14) 

a43=0, ¼, ~, ~.  (15) 
Hence, 

This is a typical  example  of the compat ib i l i ty  re- 
quirements.  They fix the absolute value of certain 
of the a 's .  In  part icular ,  the order relations always 
fix the a ' s  corresponding to the directions parallel  to 
rotat ion axes or mirror  planes, and leave the other 
a ' s  as a rb i t ra ry  parameters .  We shall  consider as 
equivalent  all those groups which differ only by  the 
values of such a rb i t ra ry  parameters.  Final ly ,  we note 
tha t  equat ion (15) holds in both the pr imi t ive  and 
face-centered index space, as 1 can take on all values 
in each. 

Thus, in the pr imi t ive  index space there are four 
complex point  groups, corresponding to the four 

values of ~4a. I t  should be noted tha t  because the 
direction of phase changes differs in sign with the sign 
of l, the groups for which ~43=~ cannot be made 
equivalent  to tha t  for which ~43=¼. This is not the 
case in the groups formed of operators of the type 
of equat ion (6) in the special case ~41 = ~40. = ~43 =0 ,  
~44= 1 and f14= ¼ or ~ (i.e., phase changes which are 
independent  of coordinates). Here the two groups are 
identical  and correspond to opposite ways of looking 
down the / -ax i s .  We shall now show tha t  for ent i re ly  
different  reasons, the groups are identical  in the face- 
centered index space. We can write the t ransformat ion 
corresponding to the operator (a) as 

F ( -  k, h, l ) =  F(h, k, l) exp jl/4 

for 54a=¼. Since ~41 and ~42 are arbi t rary ,  we can 
also write this as 

F ( - k ,  h, l )=  F(h, k, l )exp j[(h + k)/2 + l / 4 ] .  

For the centered group, h + k + l = 2n. When 1 = 4p + l, 
where p is an integer, h + k is odd and we have a phase 
change equivalent  to ~43 = ~, as (h + k)/2 = ½, (rood. 1). 

') (h + k)/2 = 0, (mod. 1), but  31/4 = l/4, When 1 = 4p + , ,  
(rood. 1). When l = 4 p + 3  or 4p the si tuations are 
exact ly the same. Thus the restriction h + k + l = 2 n  
makes the group of a43=¼ equivalent  to the group 
of ~43= ~. In  the same way, ~43-= ½ is equivalent  to 
~43=0. We have, then, six non-equivalent  groups of 
class 4 in the index space. 

The next crystal class is 4. This group has a four- 
fold rotary-inversion axis parallel to l, denoted (r). 

o o ( 1 5 )  
(~) = o 1- " 

~41 ~42 r43 1 

We require tha t  (v )4=I  on the index space. We find, 
however, by mat r ix  mult ipl icat ion,  tha t  

1 0 0 0 \  

i 1 0 (16) (~,)4 = 0 1 i )  " 
0 0 

Thus, ~41, v42, and v43 are a rb i t ra ry  parameters  and 
there are two groups in the class, corresponding to 
the two index spaces. 

In  class 4/m we introduce a mirror plane normal  
to (~), which we denote (),). Then 

0 ! 
1 0 00 

(7) = 0 i- 0 " (17) 

741 742 ),4a 1 

The group has the three generating relations, 

(7)2=I ,  (cx)(y)=(7)(~x), and ( :~)4=I .  (18) 

The phase relation obtained from (?,)2 = I is 
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274xh+2742k=0,  (mod. 1). (19) 

In  both spaces this implies 

?41----0 or  ½ (20) 
?42=0 or ½ 

and ?43 is arbi t rary .  
The second generat ing relat ion yields the equat ion 

(~X41 + ?41)h + (~x42 + 742)]c + ( ?43 -  a43)l 

= (?42 "4- ~41)h "3 t- ((X42 -- 741)~ -Jr" (?43 "{- (X43)l 
or  

(741 - ?4e)h + (?41+ 742)k- 2~43l = 0 .  (21) 

For the pr imit ive  latt ice this implies 

0¢43=0 or ½ (22) 
741 = ~'42 • 

It  should be noted tha t  the a l ternat ive  solution, 
741 = 1 - ?42, yields no new informat ion as ?42 = 0 or ½. 
For the centered latt ice we can have either equat ion 
(22) holding or 

~43=¼ or ~ (23a) 

?al = 0, ?42 = ½ (23b) 
741 = t, 742 = 0 .  

Since the h and  k axes are identical,  the two si tuations 
described in equat ion (23b) are equivalent .  

This example  also shows how the existence of a 
smaller  number  of index space points  on which the 
compat ib i l i ty  relations must  hold allows operator 
combinat ions which are inconsistent  with a pr imi t ive  
index space. Then, for the pr imi t ive  lattice, the 
possible combinat ions of de termined parameters  are 
l isted in Table 1. 

Table 1. Allowed groups, class 4/m, primitive index space 

0¢43 ~"41 = 742 Space group 
0 0 P4/m 
0 ½ P4/n 
½ 0 P42/m 
½ ½ P42/n 

For the centered index space, the possible com- 
binations are listed in Table 2. 

Table 2. Allowed groups, class 4/m, face-centered 
index space 

0143 741 742 Space group 
0 0 0 I4/m 
½ 0 0 
o ½ ½ 
½ ½ ½ 
¼ ½ 0 141/a 

½ o 

However, examining Table 2 we f ind tha t  the first 
and second, th i rd  and  fourth,  and fif th and sixth 
sets of values are equivalent,  respectively, for the 
same reasons tha t  the axes were equivalent  in the 

face-centered groups of class 4. In  addition, using the 
first set of values we have 

F ( h , k ,  - 1 ) = F ( h , k ,  1) (24) 

while the th i rd  set gives the relat ion 

F ( h , k ,  - 1 ) = F ( h , k , l ) e x p [ j ( h + k ) / 2 ] .  (25) 

We note tha t  ya3 is arbi t rary.  Setting ya3=½ in the 
th i rd  set, equat ion (25) becomes 

F(h,  k, - l ) =  F(h,  k, l ) e x p  [j(h + k + l)/2] = F(h, k, l) 

(26) 

as (h + k + l) = 2n. Thus, the independent  groups are 
the first and  fifth, all others being equivalent  to these. 

We now examine the class 4mm. In  addi t ion to (a) 
we have the mirror planes given by 

( I°° i ) (  Xl° i) 1 0 0 0 (27) 
(8) = 0 1 (e) = 0 1 

841 842 843 E41. S42 E43 

and the generating relations 

(~)4= (6)2= (e)2= I ,  (28) 

(a) (8)=  (8)(~)3 = (e) . (29) 

(5)2=1 implies tha t  

2(842k+ 84al)=0, (mod. 1) (30) 

while (e) 2 = I requires 

(e41+e4,z)(h+k)+2e4,~l=O, (mod. 1). (31) 

Final ly,  the condition tha t  ( a ) (5 )= (e )  yields 

(841- a 4 t -  s41)h+ (842~ t- 0~42-- S42)k 

+(843+2¢43--e43)l=0, (rood. 1). (32) 

In  the pr imit ive  index space, equations (30) and 
(31) imply  tha t  

842 = 0, 
843 = 0, ½ 
e42 = 0 ,  ½ 
e41 = e42 • (33) 

Final ly ,  the coefficient of 1 in equat ion (32) com- 
bined with equation (23) implies tha t  ~4a cannot be 
¼ or -~-, but  tha t  

~43 =(), ½. (34) 

Table 3. Allowed groups, class 4mm, primitive 
index space 

a4a 542 643 e43 Space group 
0 0 0 0 P4mm 
0 ½ 0 0 P4bm 
½ 0 ½ 0 P42cm 
½ ½ ½ 0 P42nm 
0 0 ½ ½ P4cc 
0 ½ ½ ½ P4nc 
½ 0 0 ½ P42mc 
½ ½ 0 ½ P42bc 
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We thus  have four parameters  which can take on 
the values 0 or ½. The possible combinat ions of these 
parameters  are those which fulfill  equat ion (32). 
These are l isted in Table 3. We also note tha t  a l though 
the parameters  ($41, ix41, 0¢42,/~41, and  ~42 are not  
absolutely determined,  their  relat ive values are fixed. 

In  the face-centered index space, in addi t ion to 
the possibilit ies l isted above, equat ion (31) admits  
the solution 

c43 = ¼, ~ (35a) 
and  

~41 =s42=¼ or ~.  (35b) 

Wi th  sea=¼ or ~, the th i rd  term of equat ion (32) 
combined wi th  equat ion (30) implies tha t  0¢43 = ¼ or -~. 
Under  these restrictions, some 30 combinat ions of 
parameters  are possible. Of these, only four are 
independent .  These are l isted in Table 4. I t  should 
be noted tha t  the mirror planes for which c¢41, c~42, 
and ~43 are all ¼, ra ther  t h a n  the usual  0 or ½, are 
a new phenomenon which appears only for the 
diagonal ly  placed mirror plane in the centered index 
space. This crystal  class is the first  in which the 
relat ive values of the otherwise a rb i t ra ry  parameters  
are determined.  

Table 4. Allowed independent groups, class 4mm, 
face-centered index space 

S p a c e  
°¢43 (~42 (~43 (~.13 e l l  : *'42 g r o u p  

0 0 0 0 0 14ram 
¼ 0 0 ¼ ¼ I41rnd 
¼ 0 .~ ¼ ~ 141cd 
0 0 ~ 0 0 I4cm 

The groups which we have derived thus far i l lustrate 
all the phenomena  which are encountered in a complete 
der ivat ion of the groups formed by  operators of the 
type  of equat ion (10). To avoid repetit ion, we leave 
the remainder  of the groups unlisted. 

9. Physical  interpretation of the 
index-space  point p, roups 

I t  has been shown, thus  far, tha t  there exists a set 
of operators which express the possible l inear point  
symmetr ies  of a complex funct ion defined on an 
index space. These operators form complex point  
groups on the index space. By restricting the operators 
to be compatil)le with hermi t i an  s y m m e t r y  and  to 
contain no index- independent  phase t ransformat ions  
the symmetr ies  of the point  groups must  be those 
of the structure factors, since these are the Fourier  
t ransforms of positive real, periodic functions. The 
more general operators express the s y m m e t r y  proper- 
ties of the structure factors belonging to black-white, 
colored, or complex space groups. 

We now examine in greater detail  some fur ther  
aspects of the dual i ty  between physical  and Fourier  

Index  space. We begin with equat ion (6). This equation 
states, choosing 34~ = + 1, tha t  

F(RvK) = F ( K )  exp [j(~41h+ a42k+ a43/)+jfla] (36) 

where K = ( h ,  k, 1). F(K) is the coefficient in the 
Fourier  series which describes the complex function 
Q(x, y, z) or Q(r). Hence 

Q(r) = X K F ( K ) e x p j ( K . r ) .  (37) 

This can also be written, by  a change of the order 
of summation,  as 

o(r) = XK F(RvK) exp j (RvK,  r) 

= Z'KF(RvK) exp j(R;-1RvK. R~lr)  

as the scalar product  is invar ian t  under  such a trans- 
formation.  Furthermore,  using equat ion (36), 

~(r) = XK F(K) exp {j[(K.RT, lr)  + K. a + f14]} 

where ~ =  (~41, 342, an3). Hence, 

~(r) = exp (jfla)2~KF(K) exp [ jK.  (R~lr  + ~)] .  

But ,  examining equat ion (37), we f ind tha t  this 
implies 

o(r) = e x p  (jfla)e(Ri;lr + ~) . (38) 

Thus, for each s y m m e t r y  operator in Fourier  space 
there is a complex s y m m e t r y  operator in physical  
space. The physical  space operator is a space group 
operator, in general, as a represents i t  t ransla t ional  
part .  Thus the groups derived and listed in the tables 
bear a one-to-one correspondence to the Schoenflies- 
Federov space groups. For this reason, the tables 
contain the space group symbol.  We have found tha t  
when fin=0, the condit ion tha t  the Index space 
operators be of the same order as Rp leads to restric- 
tions on the components of a parallel  to the operator. 
These are just  the conditions for the glide elements 
to be some mult iple  of 1/n, e.g., tha t  a four-fold 
screw axis have a pi tch of 1, 2, or 3 quarters of an 
iden t i ty  period. This rule was broken by the diagonal 
mirror  plane of 4ram in the centered index space. 
Here there could be ~41 = ~42 = a48 = ¼. This is because 
the d glide is an allowed operation in the body- 
centered physical  space. W h a t  we have te rmed the 
arb i t ra ry  components of a correspond to t ransla t ion 
portions of the physical  space operator which arise 
from the displacement  of the operator from the origin. 
In  space groups where the relative positions of the 
operators remain  arbi t rary ,  such as 4/m, these com- 
ponents of ~ remain  arbi t rary.  In  a group where the 
relat ive positions of the operators are fixed, as, for 
example,  in class 4ram where the positions of the four- 
fold axis relat ive to the intersection of the mirror 
planes is de termined by space group consistency 
relations, we have conditions in Fourier  space which 
fix the relative values of the corresponding com- 
ponents of ~. 
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Similarly, the properties (i) and (ii) listed in the 
section Index-Space Point Groups correspond to a 
center of symmetry in physical space forcing the 
structure factor to be real. Property (iv) is a represen- 
tation of the fact that  screw axes and glide planes 
lead to systematic absences in the index space. 

We have noted that  if /~4----0 o r  ½, the symmetry 
operator (6) represents the symmetry of a real function. 
The groups of such operators are the structure factor 
symmetry groups corresponding to the black-white 
groups. 

With f14 free to take on all values permitted by the 
compatibility relations, we have, as demonstrated by 
equation (37), the index-space analogues of the pos- 
sible groups in which the phase change in independent 
of the coordinates. These groups have, in general, 
restrictions which do not appear with the other groups. 
That is, they require the vanishing of the function 
on planes of non-invariant points. Consider an n-fold 
axis parallel to 1 in index space and denoted by (a,). 
Then 

0 l + . (39) 

\ 3~4t 0¢42 ~%43 1/ 4 

Raising this operator to the nth power we get 

Then 

(,00 0)(0 t 
1 o ° o + (40) (~.)~ = 0 0 1 

0 0 n ~ 4 3  1 \n~4 / 

(na43)l+nf14=O, (mod. 1). (41) 

In discussing this equation, we have to distinguish 
two cases : 

(a) The equation is to be fulfilled for all values of 1. 
I t  then shows (for l=O) that  fl4=s/n, where s is any 
integer, and, by forming the difference of the con- 
ditions for l and 1 + l, that  a43 = q/n, with q an integer. 
These solutions give the normal screw axes with phase 
change. Similarly, complex glide mirror planes are 
obtained. 

(b) The equation is to be fulfilled only on an equi- 
distant set of planes. This is the case if F(h, k, 1)=O 
for all values l # L t ,  where L t = t l + L o  (t, Lo integers). 
The same procedure as before now determines ~43 
and /~4 a s  

0¢43 : q'/tn, f14 = s ' / n -  Lo¢¢43 , (42) 

where q' and s' are arbitrary integers, and t and L0 
assumed integers. These values of the coefficients 
describe 'open' complex screw axes. If c is the identity 
period which would be obtained with the 'closed' 
operation of an n-fold screw axis, the 'open' operator 
characterized by (42) yields, after n-fold application, 
the glide c/t and phase shift -Loq'/t .  The true identity 
period is therefore tc and the order of the operator tn. 

There are apparently two types of operators on 

complex physical-space functions which have not 
appeared in the index-space formalism. The first is 
complex conjugation. Equation (6), with a 4 4 = - 1  
states 

F ( R p K ) = F * ( K )  exp [ j ( ~ . K  + fl4)] . (44) 

Writing 9(r) =£'KF(RvK) exp [j(RvK.r)] 

we have 

@(r) = ZK F*(K) exp {j[K. (R~'r + ~)+ f14]] 
o r  

@(r) =exp ( j f l4)o*(Rvr-  :x), (45) 

where Rv is the product of the inversion and R~ -1. 
It follows that  a set of complex point groups can be 
constructed in index space for which a 4 4 = -  l, and 
where the corresponding physical space groups have 
crystal classes which are determined by Rv rather 
than by Rv. 

The second type of complex space groups which do 
not appear to have Fourier space analogues are those 
in which the operators have phase transformations 
which vary with the coordinates. We have shown 
that  such an operation in the index space implies a 
translational component in physical space. I t  follows 
that  the Fourier space analogues of such physical 
space groups are the above-derived index space point 
groups consistently displaced from the origin. By 
consistently, we mean that they leave the Bravais 
lattice invariant and can still obey the compatibility 
relations. The simplest example of this is the mirror 
operator normal to h displaced n/2 from the origin 
in the h direction. The matrix representation of this 
is (i00 

] 0 k 0 (46) 
l' = 0 1 1 - 0 
~v' 0 0 0 cf 0 

o r  

F(h + n, k, 1)=F(h, k, l) (47) 
which implies 

@(x, y, z)= @(£, y, z) exp (jnx) . (48) 

For n odd we have the operators discussed im- 
mediately after equation (3) for which F(½, y, z)=0, 
while for n even this requirement need not hold. 

Other types of combinations of operators appear 
to be possible forms for the index space symmetry 
corresponding to the last-named groups. An example 
is a group in which the four-fold axis is separated 
from the intersection of the mirror planes in an index- 
space group of the form 4mm. I t  is easily shown, 
however, that  such a configuration generates perio- 
dicity in the index space and thus robs physical space 
of its continuity in one or more directions. 

10.  D u a l i t y  o f  i n d e x  s p a c e  a n d  p h y s i c a l  s p a c e  

The results of the work may be summarized as 
follows. There is an exact correspondence between 
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point  groups in physical and Fourier  space under  the 
following condition. The physical  space point  group 
has no phase changes which are a function of coor- 
dinates.  A space group isomorphous with a point  group 
also yields this point  group as the index space sym- 
metry .  Translat ions introduced in one space imply,  
in the other,  phase factors which are l inear functions 
of the coordinates. 

There is a special type  of physical  space s t ruc ture  
in which the groups possible in the two spaces become 
identical. Consider the case in which the physical  
space s t ruc ture  consists of complex point  masses 
located a t  points which are rat ional  fract ions of the 
repeat  distances. The complex densi ty  can be ~Titten 

if(r) = X p g ( p ) 5 ( r -  p) (47) 

where 5 ( r - p )  is the Dirac del ta  funct ion and 

p = (pl/n~, p2/n2, Pain3), with p~=0,  1, 2, . . . ,  n~. (48) 

Then 

F(K)  = I 2 : p g ( p ) 6 ( r - p )  ( - j K . r ) d V  exp 

= Zp (g(p) exp ( - j K .  p ) .  (49) 

In  this case Four ier  space is periodic with repeat  
distances (nl, n2, ha). Similarly, with the simple re- 
scaling of coordinates, x' i = nixi, physical space becomes 
an index space in the sense in which we have defined it. 
The two spaces are both periodic index spaces of 
complex functions and must  have the same s y m m e t r y  
groups. The Fourier  space s y m m e t r y  group corre- 
sponding to a given physical  space group is not, 

of course, identical to t ha t  physical  space groups, but  
the sets of possible groups are identical. 

Still anothcr  interesting limit exists. This is the 
t ransi t ion from an index space to a continuous Fourier' 
space. I t  can be shown, as a generalization of the 
discussion of equat ion (1) in section 2, t ha t  only the 
parameters  called a rb i t ra ry ,  i.e. those which do not  
enter  into the order equat ion can 1)e non-zero. This 
is because the order equat ion cannot  hold otherwise 
in a continuous space. We know tha t  the non-arb i t ra ry  
t)arameters  correspond to glide elements which gener- 
ate  infinite periodicity in one or more directions. 
Thus, the existence of a continuous Fourier  space 
rulcs out those Fourier  space operators  which cor- 
respond to operators  in physical space which generate  
infinite periodicity. 
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The low-melting form of oleic acid is pseudoorthorhombic with a=9.51, b=4"74 and c=40-6 A. 
The space group is P21/a and there are four molecules per cell. The molecules are bent at the cis- 
double bond. The two chain parts have the usual planar zig-zag conformation and adopt a side 
packing 0'l[ not previously found in long-chain compounds. The chain axes of the two parts have 
equal angles of tilt (56.5 °) to the (001) planes but are tilted in opposite directions. The acid dimers 
are held together by hydrogen bonds (2.64 •) around centres of symmetry and form a layer structure 
normal for long-chain compounds. 

In troduct ion  

I t  has long been kno~7~ (Kirschner, 1912) t ha t  oleic 
acid is dimorphous.  Several observations of two 
melting points have been reported;  Lu t ton  (1946) 

gives the values 13.3 ° and 16.2 °. He invest igated the 
X - r a y  powder pa t te rns  of the two forms and  repor ted 
the long spacing, d(001), values of 40.5 _~ and 42.2 
(84.4) .~ respectively. 

The only single-crystal da ta  given for unsa tu ra ted  


